Thermal transport in functionalized graphene.
نویسندگان
چکیده
We investigate the effects of two-dimensional (2D) periodic patterns of functional groups on the thermal transport in a graphene monolayer by employing molecular and lattice dynamics simulations. Our calculations show that the use of patterned 2D shapes on graphene reduces the room temperature thermal conductivity, by as much as 40 times lower than that of the pristine monolayer, due to a combination of boundary and clamping effects. Lattice dynamics calculations elucidate the correlation between this large reduction in thermal conductivity and two dynamical properties of the main heat carrying phonon modes: (1) decreased phonon lifetimes by an order of magnitude due to scattering, and (2) direction-dependent group velocities arising from phonon confinement. Taken together, these results suggest that patterned graphene nanoroads provide a method for tuning the thermal conductivity of graphene without the introduction of defects in the lattice, opening an important possibility for thermoelectric applications.
منابع مشابه
Effect of Functionalization Process on Thermal Conductivity of Graphene Nanofluids
In this research, Graphene was synthesized by chemical vapor deposition (CVD) method in atmosphere pressure (14.7 psi). Different functionalization method was used for oxidizing of graphene such as acid and alkaline treatments. The Functionalized graphene (FG) was characterized by FTIR and Raman spectroscopy. Nanofluid with water and different concentration (0.05, 0.15 and 0.25 wt %) of ...
متن کاملEffect of Asymmetric Functionalized Graphene Oxide (Janus GO) on Young′s Modulus and Glass Transition Temperature of PSf Ultrafiltration Membrane
In this study, effect of asymmetric functionalized graphene oxide (Janus GO) on Young′s modulus and glass transition temperature of Polysulfone (PSf) ultrafiltration membranes was investigated. The membranes were prepared via phase inversion method and GO nanosheets were dispersed in casting solution by sonication. Results showed that the Normalized Young’s modulus (on the basis of neat ...
متن کاملManipulating thermal conductance at metal-graphene contacts via chemical functionalization.
Graphene-based devices have garnered tremendous attention due to the unique physical properties arising from this purely two-dimensional carbon sheet leading to tremendous efficiency in the transport of thermal carriers (i.e., phonons). However, it is necessary for this two-dimensional material to be able to efficiently transport heat into the surrounding 3D device architecture in order to full...
متن کاملFunctionalization mediates heat transport in graphene nanoflakes
The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistanc...
متن کاملThermoelectric Properties of Functionalized Graphene Grain Boundaries
Thermoelectric effect enables direct conversion between thermal and electrical energy and provides an alternative route for power generation and refrigeration. Hereby it is important to find materials with a high thermoelectric performance. In this sense, in the present work, we study the behavior of the thermoelectric properties of functionalized graphene grain boundaries by employing non-equi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2012